9 research outputs found

    Compact Multi-Coil Inductive Power Transfer System with a Dynamic Receiver Position Estimation

    Get PDF
    Inductive power transfer (IPT) systems with tolerance to the lateral misalignment are advantageous for enhancing the transmitted power, usability and security of the system. In this thesis, a misalignment tolerant multi-coil design is proposed to supply stationary and dynamic battery-free wireless devices. A compact architecture composed of individually switchable 3 layers of printed coils arranged with overlap for excellent surface coverage. A hybrid architecture based on three compact AC supply modules reduces the supply circuit complexity on the sending Seite 2 von 4side. It detects the position of the receiver coil quickly, controls the activation of the transmitting coils and estimates the next receiver position. The proposed architecture reduces the circuit footprint by a factor of 62% compared to common architectures. A transmitter coil activation strategy is proposed based on the detection of the transmitting coils voltage and communication between sending side and receiving side to detect devices to supply nature and position and to differentiate them from other conductive objects in the sending area to the supplying security. The experimental results prove that the proposed architecture has a good performance for different trajectories when the device speed does not exceed 15 mm/s. Besides, the maximum detection time for the initial device position is about 1.6 s. The maximal time interval to check the transmitter coils is around 0.7 s.:1. INTRODUCTION 2. THEORETICAL BACKGROUND 3. STATE OF THE ART OF MULTI-COIL IPT SYSTEMS 4. NOVEL DESIGN OF A MULTI-COIL IPT SYSTEM 5. MULTI-COIL ACTIVATION PROCEDURE 6. EXPERIMENTAL INVESTIGATIONS 7. CONCLUSION AND OUTLOOKInduktive Energieübertragungssysteme (IPT) mit Toleranz gegenüber seitlichem Versatz sind vorteilhaft, um die übertragene Leistung, die Nutzbarkeit und die Sicherheit des Systems zu verbessern. In dieser Arbeit wird ein versatztolerantes Multispulen-Design vorgeschlagen, um stationäre und dynamische batterielose drahtlose Geräte zu versorgen. Die kompakte Architektur besteht aus 3 einzeln schaltbaren Schichten gedruckter Spulen, die überlappend angeordnet sind, um eine hervorragende Oberflächenabdeckung zu gewährleisten. Eine hybride Architektur, die auf drei kompakten AC-Versorgungsmodulen basiert, reduziert die Komplexität der Versorgungsschaltung auf der Senderseite. Sie erkennt die Position der Empfängerspule schnell, steuert die Aktivierung der Sendespulen und schätzt die nächste Empfängerposition. Die vorgeschlagene Architektur reduziert den Platzbedarf der Schaltung um einen Faktor von 62 % im Vergleich zu herkömmlichen Architekturen. Es wird eine Aktivierungsstrategie für die Sendespulen vorgeschlagen, die auf der Erkennung der Spannung der Sendespulen und der Kommunikation zwischen Sende- und Empfangsseite basiert, um die Art und Position der zu versorgenden Geräte zu erkennen und sie von anderen leitfähigen Objekten im Sendebereich zu unterscheiden. Die experimentellen Ergebnisse zeigen, dass die vorgeschlagene Architektur eine gute Leistung für verschiedene Trajektorien hat, wenn die Geschwindigkeit der Geräte 15 mm/s nicht überschreitet. Außerdem beträgt die maximale Erkennungszeit für die anfängliche Geräteposition etwa 1,6 s. Das maximale Zeitintervall für die Überprüfung der Senderspulen beträgt etwa 0,7 s.:1. INTRODUCTION 2. THEORETICAL BACKGROUND 3. STATE OF THE ART OF MULTI-COIL IPT SYSTEMS 4. NOVEL DESIGN OF A MULTI-COIL IPT SYSTEM 5. MULTI-COIL ACTIVATION PROCEDURE 6. EXPERIMENTAL INVESTIGATIONS 7. CONCLUSION AND OUTLOO

    Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation

    Get PDF
    The health sector is currently experiencing a significant paradigm shift. The growing number of elderly people in several countries along with the need to reduce the healthcare cost result in a big need for intelligent devices that can monitor and diagnose the well-being of individuals in their daily life and provide necessary alarms. In this context, wearable computing technologies are gaining importance as edge devices for the Internet of Medical Things. Their enabling technologies are mainly related to biological sensors, computation in low-power processors, and communication technologies. Recently, energy harvesting techniques and circuits have been proposed to extend the operating time of wearable devices and to improve usability aspects. This survey paper aims at providing an overview of technologies, techniques, and algorithms for wearable devices in the context of the Internet of Medical Things. It also surveys the various transformation techniques used to implement those algorithms using fog computing and IoT devices

    Compact Multi-Coil Inductive Power Transfer System with a Dynamic Receiver Position Estimation

    No full text
    Inductive power transfer (IPT) systems with tolerance to the lateral misalignment are advantageous for enhancing the transmitted power, usability and security of the system. In this thesis, a misalignment tolerant multi-coil design is proposed to supply stationary and dynamic battery-free wireless devices. A compact architecture composed of individually switchable 3 layers of printed coils arranged with overlap for excellent surface coverage. A hybrid architecture based on three compact AC supply modules reduces the supply circuit complexity on the sending Seite 2 von 4side. It detects the position of the receiver coil quickly, controls the activation of the transmitting coils and estimates the next receiver position. The proposed architecture reduces the circuit footprint by a factor of 62% compared to common architectures. A transmitter coil activation strategy is proposed based on the detection of the transmitting coils voltage and communication between sending side and receiving side to detect devices to supply nature and position and to differentiate them from other conductive objects in the sending area to the supplying security. The experimental results prove that the proposed architecture has a good performance for different trajectories when the device speed does not exceed 15 mm/s. Besides, the maximum detection time for the initial device position is about 1.6 s. The maximal time interval to check the transmitter coils is around 0.7 s.:1. INTRODUCTION 2. THEORETICAL BACKGROUND 3. STATE OF THE ART OF MULTI-COIL IPT SYSTEMS 4. NOVEL DESIGN OF A MULTI-COIL IPT SYSTEM 5. MULTI-COIL ACTIVATION PROCEDURE 6. EXPERIMENTAL INVESTIGATIONS 7. CONCLUSION AND OUTLOOKInduktive Energieübertragungssysteme (IPT) mit Toleranz gegenüber seitlichem Versatz sind vorteilhaft, um die übertragene Leistung, die Nutzbarkeit und die Sicherheit des Systems zu verbessern. In dieser Arbeit wird ein versatztolerantes Multispulen-Design vorgeschlagen, um stationäre und dynamische batterielose drahtlose Geräte zu versorgen. Die kompakte Architektur besteht aus 3 einzeln schaltbaren Schichten gedruckter Spulen, die überlappend angeordnet sind, um eine hervorragende Oberflächenabdeckung zu gewährleisten. Eine hybride Architektur, die auf drei kompakten AC-Versorgungsmodulen basiert, reduziert die Komplexität der Versorgungsschaltung auf der Senderseite. Sie erkennt die Position der Empfängerspule schnell, steuert die Aktivierung der Sendespulen und schätzt die nächste Empfängerposition. Die vorgeschlagene Architektur reduziert den Platzbedarf der Schaltung um einen Faktor von 62 % im Vergleich zu herkömmlichen Architekturen. Es wird eine Aktivierungsstrategie für die Sendespulen vorgeschlagen, die auf der Erkennung der Spannung der Sendespulen und der Kommunikation zwischen Sende- und Empfangsseite basiert, um die Art und Position der zu versorgenden Geräte zu erkennen und sie von anderen leitfähigen Objekten im Sendebereich zu unterscheiden. Die experimentellen Ergebnisse zeigen, dass die vorgeschlagene Architektur eine gute Leistung für verschiedene Trajektorien hat, wenn die Geschwindigkeit der Geräte 15 mm/s nicht überschreitet. Außerdem beträgt die maximale Erkennungszeit für die anfängliche Geräteposition etwa 1,6 s. Das maximale Zeitintervall für die Überprüfung der Senderspulen beträgt etwa 0,7 s.:1. INTRODUCTION 2. THEORETICAL BACKGROUND 3. STATE OF THE ART OF MULTI-COIL IPT SYSTEMS 4. NOVEL DESIGN OF A MULTI-COIL IPT SYSTEM 5. MULTI-COIL ACTIVATION PROCEDURE 6. EXPERIMENTAL INVESTIGATIONS 7. CONCLUSION AND OUTLOO

    Multiplexed Supply of a MISO Wireless Power Transfer System for Battery-Free Wireless Sensors

    No full text
    Multi-input single output wireless power transmission (MISO-WPT) systems have decisive advantages concerning flexible receiver position in comparison to single coil systems. However, the supply of the primary side brings a large uncertainty in case of variable positions of the secondary side. In this paper, a compact multiplexed primary side electronic circuit is proposed, which includes only one signal generator, a passive peak detector, a communication module, and a compensation capacitor. The novel approach has been studied and evaluated for a MISO-WPT system having a 16 coils on primary side and one coil on secondary side having the double diameter. Results show that a standard microcontroller, in this case an STM32, is sufficient for the control of the whole system, so that the costs and the energy consumption are significantly reduced. An activation strategy has been proposed, which allows to determine the optimal transmitting coil for each position of the receiving coil and to switch it on. The time-to-start-charging at different positions of the receiving coil and different number of neighbors has been determined. It remains in all cases under 2.5 s

    Compact Multi-Coil Inductive Power Transfer System with a Dynamic Receiver Position Estimation

    No full text
    Inductive power transfer (IPT) systems with tolerance to the lateral misalignment are advantageous for enhancing the transmitted power, usability and security of the system. In this thesis, a misalignment tolerant multi-coil design is proposed to supply stationary and dynamic battery-free wireless devices. A compact architecture composed of individually switchable 3 layers of printed coils arranged with overlap for excellent surface coverage. A hybrid architecture based on three compact AC supply modules reduces the supply circuit complexity on the sending Seite 2 von 4side. It detects the position of the receiver coil quickly, controls the activation of the transmitting coils and estimates the next receiver position. The proposed architecture reduces the circuit footprint by a factor of 62% compared to common architectures. A transmitter coil activation strategy is proposed based on the detection of the transmitting coils voltage and communication between sending side and receiving side to detect devices to supply nature and position and to differentiate them from other conductive objects in the sending area to the supplying security. The experimental results prove that the proposed architecture has a good performance for different trajectories when the device speed does not exceed 15 mm/s. Besides, the maximum detection time for the initial device position is about 1.6 s. The maximal time interval to check the transmitter coils is around 0.7 s.:1. INTRODUCTION 2. THEORETICAL BACKGROUND 3. STATE OF THE ART OF MULTI-COIL IPT SYSTEMS 4. NOVEL DESIGN OF A MULTI-COIL IPT SYSTEM 5. MULTI-COIL ACTIVATION PROCEDURE 6. EXPERIMENTAL INVESTIGATIONS 7. CONCLUSION AND OUTLOOKInduktive Energieübertragungssysteme (IPT) mit Toleranz gegenüber seitlichem Versatz sind vorteilhaft, um die übertragene Leistung, die Nutzbarkeit und die Sicherheit des Systems zu verbessern. In dieser Arbeit wird ein versatztolerantes Multispulen-Design vorgeschlagen, um stationäre und dynamische batterielose drahtlose Geräte zu versorgen. Die kompakte Architektur besteht aus 3 einzeln schaltbaren Schichten gedruckter Spulen, die überlappend angeordnet sind, um eine hervorragende Oberflächenabdeckung zu gewährleisten. Eine hybride Architektur, die auf drei kompakten AC-Versorgungsmodulen basiert, reduziert die Komplexität der Versorgungsschaltung auf der Senderseite. Sie erkennt die Position der Empfängerspule schnell, steuert die Aktivierung der Sendespulen und schätzt die nächste Empfängerposition. Die vorgeschlagene Architektur reduziert den Platzbedarf der Schaltung um einen Faktor von 62 % im Vergleich zu herkömmlichen Architekturen. Es wird eine Aktivierungsstrategie für die Sendespulen vorgeschlagen, die auf der Erkennung der Spannung der Sendespulen und der Kommunikation zwischen Sende- und Empfangsseite basiert, um die Art und Position der zu versorgenden Geräte zu erkennen und sie von anderen leitfähigen Objekten im Sendebereich zu unterscheiden. Die experimentellen Ergebnisse zeigen, dass die vorgeschlagene Architektur eine gute Leistung für verschiedene Trajektorien hat, wenn die Geschwindigkeit der Geräte 15 mm/s nicht überschreitet. Außerdem beträgt die maximale Erkennungszeit für die anfängliche Geräteposition etwa 1,6 s. Das maximale Zeitintervall für die Überprüfung der Senderspulen beträgt etwa 0,7 s.:1. INTRODUCTION 2. THEORETICAL BACKGROUND 3. STATE OF THE ART OF MULTI-COIL IPT SYSTEMS 4. NOVEL DESIGN OF A MULTI-COIL IPT SYSTEM 5. MULTI-COIL ACTIVATION PROCEDURE 6. EXPERIMENTAL INVESTIGATIONS 7. CONCLUSION AND OUTLOO

    Vibration Converter with Passive Energy Management for Battery-Less Wireless Sensor Nodes in Predictive Maintenance

    No full text
    Predictive maintenance is becoming increasingly important in industry and requires continuous monitoring to prevent failures and anticipate maintenance processes, resulting in reduced downtime. Vibration is often used for failure detection and equipment conditioning as it is well correlated to the machine’s operation and its variation is an indicator of process changes. In this context, we propose a novel energy-autonomous wireless sensor system that is able to measure without the use of batteries and automatically deliver alerts once the machine has an anomaly by the variation in acceleration. For this, we designed a wideband electromagnetic energy harvester and realized passive energy management to supply a wireless sensor node, which does not need an external energy supply. The advantage of the solution is that the designed circuit is able to detect the failure without the use of additional sensors, but by the Analog Digital Converter (ADC) of the Wireless Sensor Nodes (WSN) themselves, which makes it more compact and have lower energy consumption. The electromagnetic converter can harvest the relevant energy levels from weak vibration, with an acceleration of 0.1 g for a frequency bandwidth of 7 Hz. Further, the energy-management circuit enabled fast recharging of the super capacitor on a maximum of 31 s. The designed energy-management circuit consists of a six-stage voltage multiplier circuit connected to a wide-band DC-DC converter, as well as an under-voltage lock-out (UVLO) circuit to connect to the storage device to the WSN. In the failure condition with a frequency of 13 Hz and an acceleration of 0.3 g, the super capacitor recharging time was estimated to be 24 s. The proposed solution was validated by implementing real failure detection scenarios with random acceleration levels and, alternatively, modus. The results show that the WSN can directly measure the harvester’s response and decide about the occurrence of failure based on its characteristic threshold voltage without the use of an additional sensor

    Vibration Converter with Passive Energy Management for Battery-Less Wireless Sensor Nodes in Predictive Maintenance

    No full text
    Predictive maintenance is becoming increasingly important in industry and requires continuous monitoring to prevent failures and anticipate maintenance processes, resulting in reduced downtime. Vibration is often used for failure detection and equipment conditioning as it is well correlated to the machine’s operation and its variation is an indicator of process changes. In this context, we propose a novel energy-autonomous wireless sensor system that is able to measure without the use of batteries and automatically deliver alerts once the machine has an anomaly by the variation in acceleration. For this, we designed a wideband electromagnetic energy harvester and realized passive energy management to supply a wireless sensor node, which does not need an external energy supply. The advantage of the solution is that the designed circuit is able to detect the failure without the use of additional sensors, but by the Analog Digital Converter (ADC) of the Wireless Sensor Nodes (WSN) themselves, which makes it more compact and have lower energy consumption. The electromagnetic converter can harvest the relevant energy levels from weak vibration, with an acceleration of 0.1 g for a frequency bandwidth of 7 Hz. Further, the energy-management circuit enabled fast recharging of the super capacitor on a maximum of 31 s. The designed energy-management circuit consists of a six-stage voltage multiplier circuit connected to a wide-band DC-DC converter, as well as an under-voltage lock-out (UVLO) circuit to connect to the storage device to the WSN. In the failure condition with a frequency of 13 Hz and an acceleration of 0.3 g, the super capacitor recharging time was estimated to be 24 s. The proposed solution was validated by implementing real failure detection scenarios with random acceleration levels and, alternatively, modus. The results show that the WSN can directly measure the harvester’s response and decide about the occurrence of failure based on its characteristic threshold voltage without the use of an additional sensor

    Analytical and Experimental Performance Analysis of Enhanced Wake-Up Receivers Based on Low-Power Base-Band Amplifiers

    Get PDF
    With the introduction of Internet of Things (IoT) technology in several sectors, wireless, reliable, and energy-saving communication in distributed sensor networks are more important than ever. Thereby, wake-up technologies are becoming increasingly important as they significantly contribute to reducing the energy consumption of wireless sensor nodes. In an indoor environment, the use of wireless sensors, in general, is more challenging due to signal fading and reflections and needs, therefore, to be critically investigated. This paper discusses the performance analysis of wakeup receiver (WuRx) architectures based on two low frequency (LF) amplifier approaches with regard to sensitivity, power consumption, and package error rate (PER). Factors that affect systems were compared and analyzed by analytical modeling, simulation results, and experimental studies with both architectures. The developedWuRx operates in the 868MHz band using on-off-keying (OOK) signals while supporting address detection to wake up only the targeted network node. By using an indoor setup, the signal strength and PER of received signal strength indicator (RSSI) in different rooms and distances were determined to build a wireless sensor network. The results show a wake-up packets (WuPts) detection probability of about 90% for an interior distance of up to 34 m

    Edge Devices for Internet of Medical Things: Technologies, Techniques, and Implementation

    No full text
    The health sector is currently experiencing a significant paradigm shift. The growing number of elderly people in several countries along with the need to reduce the healthcare cost result in a big need for intelligent devices that can monitor and diagnose the well-being of individuals in their daily life and provide necessary alarms. In this context, wearable computing technologies are gaining importance as edge devices for the Internet of Medical Things. Their enabling technologies are mainly related to biological sensors, computation in low-power processors, and communication technologies. Recently, energy harvesting techniques and circuits have been proposed to extend the operating time of wearable devices and to improve usability aspects. This survey paper aims at providing an overview of technologies, techniques, and algorithms for wearable devices in the context of the Internet of Medical Things. It also surveys the various transformation techniques used to implement those algorithms using fog computing and IoT devices
    corecore